查看: 273|回复: 0
打印 上一主题 下一主题

专为程序员设计的线性代数课程

[复制链接]

9万

主题

9万

帖子

28万

积分

管理员

管理员

Rank: 9Rank: 9Rank: 9

积分
288747
跳转到指定楼层
楼主
发表于 2020-2-25 13:51:21 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
专为程序员设计的线性代数课程
第1章 欢迎大家来到《专给程序员设计的线性代数》
欢迎大家来到《专给程序员设计的线性代数》,在这个课程中,我们将使用编程的方式,学习线性代数,这个近现代数学发展中最为重要的分支。学懂线性代数,是同学们深入学习人工智能机器学习,深度学习,图形学,图像学,密码学,等等诸多领域的基础。从这个课程开始,让我们真正学懂线性代数!...

1-1 《专为程序员设计的线性代数课程》导学
1-2 课程学习的更多补充说明
1-3 线性代数与机器学习
1-4 课程使用环境搭建
第2章 一切从向量开始
向量,是线性代数研究的基本元素。在这一章,我们将引入向量。什么是向量?我们为什么要引入向量?进而,我们将使用不同的视角看待向量,定义向量的基本运算,体会数学研究过程中,从底层开始,一点一点向上搭建数学大厦的过程:)...

2-1 什么是向量.
2-2 向量的更多术语和表示法
2-3 实现属于我们自己的向量
2-4 向量的两个基本运算.
2-5 实现向量的基本运算.
2-6 向量基本运算的性质与数学大厦的建立.
2-7 零向量.
2-8 实现零向量
2-9 一切从向量开始
第3章 向量的高级话题
在这一章,我们将重点介绍向量的两个高级运算:规范化和点乘。对于点乘运算,我们将深入理解其背后的几何含义,并且结合诸多应用,理解点乘这个看起来奇怪的运算,背后的意义,以及在诸多领域的应用:)

3-1 规范化和单位向量.
3-2 实现向量规范化
3-3 向量的点乘与几何意义.
3-4 向量点乘的直观理解
3-5 实现向量的点乘操作
3-6 向量点乘的应用.
3-7 Numpy 中向量的基本使用
第4章 矩阵不只是 m*n 个数字
向量是对数的拓展,矩阵则是对向量的拓展。虽说线性代数研究的基本元素是向量,但其实大家更常看见矩阵!在这一章,我们将深入矩阵,不仅学习什么是矩阵,矩阵的运算等基础内容,更将从用更深刻的视角看待矩阵:矩阵也可以看做是对一个系统的描绘;以及,矩阵也可以被看做是向量的函数!...

4-1 什么是矩阵
4-2 实现属于我们自己的矩阵类
4-3 矩阵的基本运算和基本性质
4-4 实现矩阵的基本运算
4-5 看待矩阵的另一个视角:系统
4-6 矩阵和向量的乘法
4-7 矩阵和矩阵的乘法
4-8 实现矩阵的乘法
4-9 矩阵乘法的性质和矩阵的幂
4-10 矩阵的转置
4-11 实现矩阵的转置和Numpy中的矩阵
第5章 矩阵的应用
在我们已经学习了矩阵之后,其实,我们就已经可以将线性代数应用在诸多领域了!在这一小节,我们将看到,使用我们现在所学习的知识,就可以把线性代数具体应用在图形学,图论,数论等领域,解决真实的实际问题!

第6章 线性系统
线性系统听起来很高大上,但是它的本质就是线性方程组!这个看似简单的形式,其实也隐藏着不小的学问,同时在各个领域都被大量使用。在这一章,我们将看到当引入矩阵,向量这些概念以后,求解线性方程组是多么的容易。同时,我们也将看到这些方法可以用来解决一些更加复杂的问题,比如求解矩阵的逆。...

第7章 线性相关,线性无关与生成空间
空间,或许是线性代数世界里最重要的概念了。在这一章,我们将带领大家逐渐理解,听起来高大上又抽象的空间,到底是什么意思?我们为什么要研究空间?空间又和我们之前探讨的向量,矩阵,线性系统,等等等等,有什么关系。 ...

第8章 正交性
相信,上一章对空间的探讨,已经颠覆了大家对空间的理解:)但是,通常情况下,我们依然只对可以被正交向量定义的空间感兴趣。在这一章,我们将看到正交的诸多优美性质,如何求出空间的正交基,以及听起来高大上的,矩阵的QR分解。 ...

第9章 再看线性变换
在之前学习矩阵的时候,相信同学们已经对线性变换有了基本认识。在这一章,我们将重新使用“空间”的视角,再来看看,到底什么是线性变换?线性变换背后,还隐藏着怎样的性质?

第10章 行列式
行列式是在线性代数的世界里,被定义的另一类基本元素。在这一章,我们将学习什么是行列式,以及行列式的基本运算规则,为后续两章学习更加重要的线性代数内容,打下坚实的基础!

第11章 特征值与特征向量
特征值和特征向量,或许是线性代数的世界中,最为著名的内容了。到底什么是特征值?什么是特征向量?我们为什么要研究特征值和特征向量?在这一章都将一一揭晓。

第12章 矩阵对角化与SVD
在学习了特征值与特征向量以后,我们将在这一章,看线性代数领域中一类特殊的矩阵——对角矩阵,进而,我们将来深入分析学习或许是线性代数的世界中,最为重要一个矩阵分解方式——SVD。

第13章 更广阔的线性代数世界,大家加油!
线性代数更加伟大的意义在于,其中的很多内容不仅仅在欧拉空间中成立,在更抽象的空间中依然成立!什么是广义向量空间?什么是内积空间?在这一章,我将简单提及这些内容,感兴趣的同学可以以此为起点,向更加理论化的线性代数的世界前进!大家加油!...


游客,如果您要查看本帖隐藏内容请回复



管理员
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|IT视频教程资源网 网站地图

GMT+8, 2024-12-23 15:06 , Processed in 2.583393 second(s), 22 queries .

快速回复 返回顶部 返回列表

客服
热线

微信 webshop6
7*24小时微信 客服服务

扫码添
加微信

添加客服微信 webshop6 获取更多

关注
公众号

关注微信公众号 webjianzhan